Modulation of Monocytic Activation following Spinal Cord Injury Reduces Secondary Injury and Neurodegeneration

نویسنده

  • Joel Levine
چکیده

The official electronic file of this thesis or dissertation is maintained by the University Libraries on behalf of The Graduate School at Stony Brook University. d d b b b y y y A A A u u u t t t h h h o o o r r r. .. We, the dissertation committee for the above candidate for the Doctor of Philosophy degree, hereby recommend acceptance of this dissertation. 2010 Spinal cord injury (SCI) sets off a cascade of biochemical and cellular events that destroy neurons, cause demyelination, and trigger an inflammatory immune response. Microglia, the immune-competent cells of the central nervous system, migrate to the site of injury, become activated and are thought to contribute to secondary damage and neurodegeneration following SCI. Conversely, growth factors and cytokines released by activated microglia may promote regeneration. Controversy exists over the neurodegenerative verses the neuroregenerative roles of activated microglia, and which role predominates following SCI. The activation state of microglia determines their neurotoxic and neurotrophic properties that influence the surrounding environment to have restorative or detrimental effects. To address the question of whether the spatio-temporal distribution of activated microglia determines their neurotoxic or neuroprotective behavior the iv dorsal hemisection of SCI was performed on wild type or CD11b-HSVTK +/-(herpes simplex virus thymidine kinase) mice. Microglia were either ablated or activation was inhibited via the administration of ganciclovir (GCV) or macrophage/microglial inhibitory factor (MIF), respectively. Ablation of or suppressing activation of microglia at early time points post SCI reduced secondary injury around the lesion epicenter, decreased the hypertrophic change of astrocytes and caused a increase in the number of axons present within the lesion epicenter. Moreover, inhibition of microglial activation with MIF reduced oligodendrocyte apoptosis and demyelination. In addition, microglia located within or proximal to the lesion produced more toxic factors, such as tumor necrosis factor alpha (TNF-!), while microglial distal to the lesion produce more trophic factors, such as interleukin-10 (IL-10). This suggests that microglia within the epicenter at early time points post injury are neurotoxic, contributing to demyelination and axonal degeneration.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Microglial Activation in Rat Experimental Spinal Cord Injury Model

Background: The present study was designed to evaluate the secondary microglial activation processes after spinal cord injury (SCI). Methods: A quantitative histological study was performed to determine ED-1 positive cells, glial cell density, and cavitation size in untreated SCI rats at days 1, 2, and 4, and weeks 1, 2, 3, and 4. Results: The results of glial cell quantification along the 4900...

متن کامل

O2: Flaxseed Reduces Proinflammatory Factors IL-1β, IL-18 and TNF-α in Injured Spinal Cord Rat Model

The pathophysiology of acute spinal cord injury (SCI) involves primary and secondary mechanisms of injury. Secondary injury mechanisms include inflammation, oxidative stress. The secondary inflammation of spinal cord tissue after SCI was critical for the survival of motor neuron and functional recovery. Flaxseed is a rich source of lignan phytoestrogen, α-linolenic acid. Flaxseed has rema...

متن کامل

A Review of the Occurrence and Mechanisms of Induction of Osteoporosis Following Spinal Cord Injury

Introduction: Spinal cord injury (SCI) causes devastating injuries in patients. The main mechanisms of the pathogenesis of secondary injury include nerve degeneration, gliosis, and inflammation. Spinal cord injury induces a disorder or failure in several organs due to the vital role of the spinal cord in regulating bodily functions. Osteoporosis is a consequence of spinal cord injury that occur...

متن کامل

Cellular and Molecular Mechanisms Involved in Neuroinflammation after Acute Traumatic Spinal Cord Injury

Introduction: Spinal cord injury (SCI) following traumatic events is associated with the limited therapeutic options and sever complications, which can be partly due to inflammatory response. Therefore, this study aims to explore the role of inflammation in spinal cord injury. The findings showed that the pathological conditions of nervous system lead to activation of microglia, astrocyte, neut...

متن کامل

Effect of chondroitinase ABC on inflammatory and oxidative response following spinal cord injury

Objective(s): Chondroitinase ABC (cABC) treatment improves functional recovery following spinal cord injury (SCI) through degrading inhibitory molecules to axon growth. However, cABC involvement in other pathological processes contributing to SCI remains to be investigated. Here, we studied the effect of cABC I on oxidative stress and inflammation developed in a rat model of SCI.Materials and M...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010